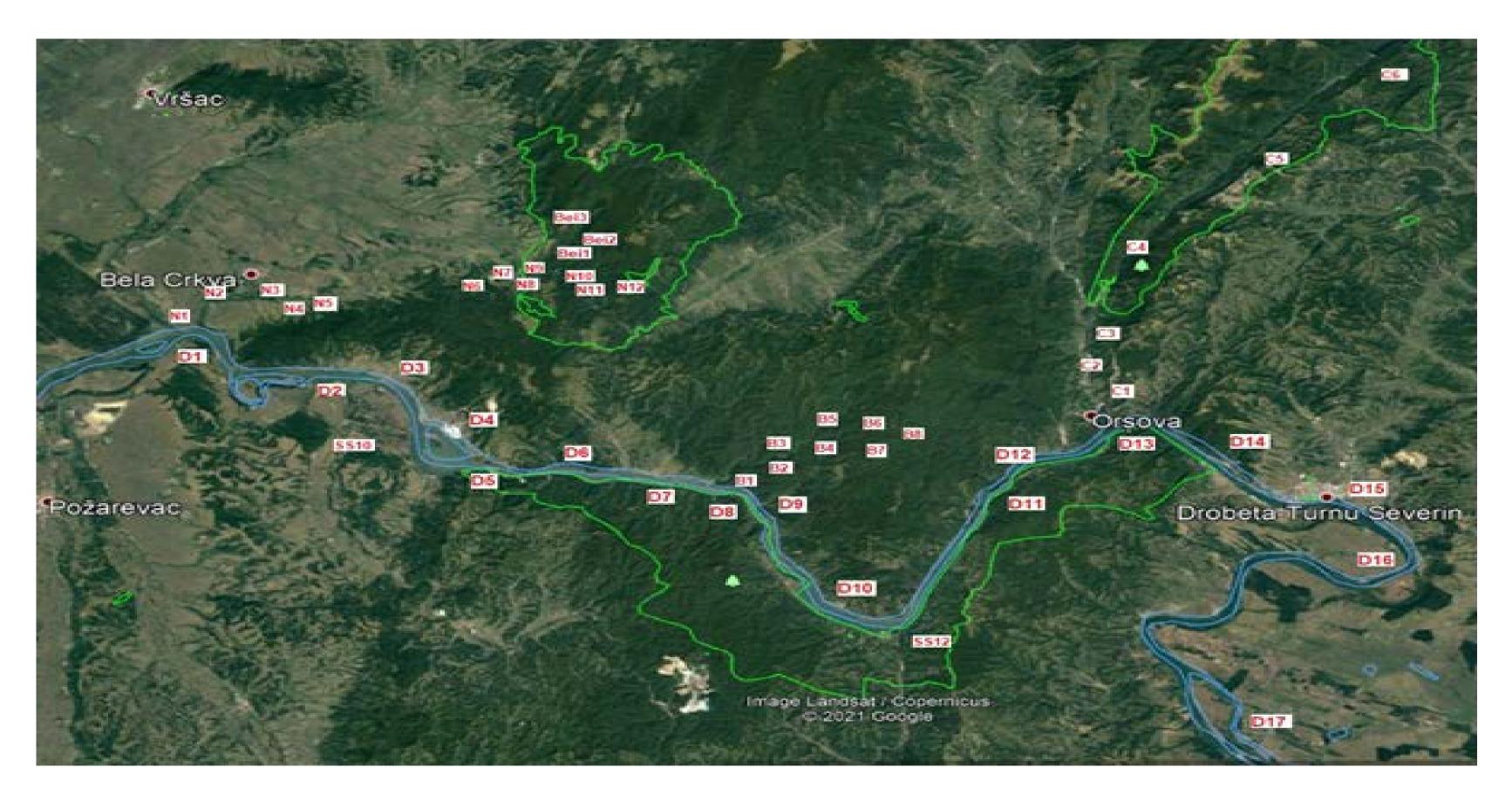


WATER QUALITY IN IRON GATE / DJERDAP NATURAL PARKS. FIRST FINDINGS OF "AEPS", AN INTERREG – IPA CBC ROMANIA – SERBIA PROJECT.

Francisc POPESCU¹, Nada STRBAC², Ioan LAZA¹, Milan Trumic², Bogdana VUJIC³, Maja TRUMIC², Carmen RADESCU⁴, Antonjievic VUKOSAV⁵, Adrian-Eugen CIOABLA¹

¹University Politehnica Timisoara, Romania, francisc.popescu@upt.ro
²University of Belgrade, Technical Faculty in Bor, Serbia, dekan@tfbor.bg.ac.rs
³University of Novi Sad, Technical Faculty "Mihajlo Pupin" Zrenjanin, Serbia, bogdaba.vujic@tfzr.rs
⁴Pro-Mehedinti Association, Romania, promehedinti@gmail.com
⁵Citizen Association Village - Movement for Rural Development, Serbia, villagebor@gmail.com


Methodology and results.

Abstract

The paper presents the objectives and expected results of a new started research project that involves two relevant education and research Balkan institutions, University Politehnica Timisoara (RO) and University of Belgrade, Technical Faculty in Bor (SR) and also two regional relevant NGO's in the field of environmental awareness raising, Pro Mehedinti Association (RO) and Citizen's association "Village – Movement for Rural Development Zlot (SR). Thru the "AEPS" project, specific water quality analysis were performed on Danube and its main tributaries in target area (Nera, Cerna, Berzasca, Porecka and Pek): COD, CBO5, ammonia, nitrates, nitrites, phosphates, conductivity and heavy metals contaminants.

Introduction

- As water is essential to life and is an indispensable resource for ecosystems and their services and for nearly all human activities, our project team experts focused project activities to reach 2 main objectives:
- ✓ Evaluation of environmental current situation in cross border "sister" Danube banks nature reservation Djerdap (Serbia) and national parks Iron Gate (Romania)
- ✓ Raising the awareness of young generations on both sides of the border on the immediate need to protect the region remarkable natural heritage.

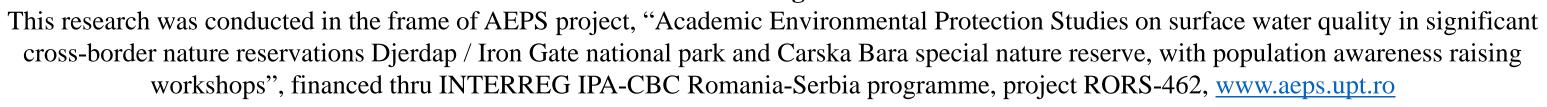
Immediate analysis for pH, temp, total hardness and dissolved oxygen were performed on site and all samples were preserved in-situ with acids and analyzed in laboratory with international reference and recognized analytical methods, as seen in table below. An example of the results obtained is presented in the next table.

	Sample pre	eservation							
Parameters	Hold time	Addition acids to pH<2	Measurement methods						
рН			Electrode - electric potential difference Electrolytic probe						
Conductivity	In situ	None							
Dissolved oxygen (DO)			Galvanic probe						
Chemical oxygen demand (COD –	28 days	H₂SO₄	Vala Eco6 thormo reactor						
CCO-Cr)	20 uays	H ₂ 30 ₄	Velp Eco6 thermo-reactor						
Biochemical oxygen demand	48 hours	None							
(BOD – CBO5)	48 110013	None	Analytik Jena Specord 250Plus, UV-VIS photometric method						
Ammonia (NH ₄ ⁻)	28 days	H ₂ SO ₄							
Nitrates (NO ₃ -)	48 hours	None							
Nitrites (NO ₂ -)	48 hours	None	HANNA HI 83200, UV-VIS photometric method						
Orto phosphate P-PO ₄ ³⁻	48 hours	None							
Sulphates (SO ₄ ²⁻)	28 days	None							
Chloride (Cl ⁻)	28 days	None							
			Analytik Jena Multi N/C 3100. Corrosion- free Focus-Radiation NDIR detection and						
Total Nitrogen (TN)	28 days	H ₃ PO ₄							
			furnace technology of combustion.						
Sodium (Na+)			Analytik Jena ZEEnit 700 P Compact Tanden						
Calcium (Ca2+)			Spectrometer. Atomic Absorption						
Iron (Fe – total)			Spectrometry – equipped with flame, hydride and graphite furnace, with Zeeman magnetic field control and Deuterium and Zeeman background correction. ICP-OES Perkin Elmer Optima 8300 Inductively Coupled Plasma Optical						
Arsenic (As ₃ ⁺)	6 months	HNO ₃							
Lead (Pb)	omonths								
Zinc (Zn ₂ ⁺)									
Cadmium (Cd)									
Manganese (Mn - total)									
Mercury (Hg)	28 days	HNO ₃	Emission spectroscopy equipped with						
	20 0033		Segmented-array Charge-coupled Device.						

Results obtained for parameter analysis in samples of Danube, between 14 august 2020 and 19 October 2020. D1 – Bazias, D2 – Divic, D3 – Pojejena, D4 – Moldova-Noua, D5 – Coronini, D6 – Liborajdea, D7 – Liubcova, D8 – Berzasca, D9 – Cozla, D10 – Svinita, D11 – Dubova, D12 – Esalnita, D13 – Orsova, D14 – Iron Gate I, D15 – Drobeta Tr. Severin, D16 – Ostrovul Corbului, D17 – Iron Gate II

Parameter	Unit	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16	D17	Eco
		24 - 27.09.2020					14 - 15.08.2020					18 - 19.10.2020					state		
рН	-	6.9	7.1	7.5	6.5	7.1	7.2	7.3	7.5	7.5	7.4	7.2	7.3	7.1	7.5	7.0	6.7	6.7	-
Conductivity	μS/cm	399	402	408	411	411	405	408	409	405	402	403	405	399	389	394	388	404	-
Oxygen concentration																			
Dissolved oxygen (DO)	mgO ₂ /l	7.5	7.2	7.2	7.1	7.2	7.2	7.5	7.5	7.3	7.2	6.9	7.4	7.2	7.4	7.0	6.5	6.4	II nd
Biochemical oxygen demand (BOD – CBO5)	mgO ₂ /I	3.6	3.3	3.5	3.7	3.5	3.2	3.2	3.4	3.5	3.5	3.5	3.6	3.4	3.4	3.3	3.3	3.2	II nd
Chemical oxygen demand (COD – CCO-Cr)	mgO ₂ /I	26	22	20	24	25	22	20	22	24	26	27	25	24	20	20	18	18	ll nd
Nutrients and general ions concentrations																			
Sodium (Na+)	mg/l	2.1	3.4	4.1	1.9	2.5	3.4	2.9	3.3	3.4	2.8	2.2	2.7	3.5	3.3	4.1	3.8	2.9	l st
Calcium (Ca ₂ +)	mg/l	4.5	5.8	6.5	5.1	6.5	6.8	7.2	7.1	6.1	5.8	4.7	5.6	5.3	4.9	5.8	5.1	3.9	l st
Ammonia (NH ₄ -)	mg/l	0.11	0.21	0.22	0.16	0.18	0.28	0.31	0.24	0.18	0.16	0.14	0.21	0.16	0.18	0.28	0.31	0.33	lst
Nitrates (NO ₃ ⁻)	mg/l	0.77	0.84	0.85	0.81	0.99	0.92	0.88	0.78	0.81	0.79	0.72	0.80	0.84	0.72	0.72	0.68	0.66	lst
Nitrites (NO ₂ -)	mg/l	0.022	0.029	0.021	0.025	0.018	0.022	0.027	0.021	0.021	0.024	0.028	0.021	0.020	0.020	0.019	0.017	0.016	II nd
Orthophosphate (P-PO ₄ ³⁻)	mg/l	0.31	0.28	0.29	0.35	0.31	0.18	0.24	0.25	0.30	0.27	0.32	0.30	0.27	0.22	0.25	0.21	0.22	III rd
Sulphates (SO ₄ ²⁻)	mg/l	8.3	9.7	10.4	7.5	12.1	8.7	11.2	14.5	12.1	10.2	8.1	7.8	9.8	10.2	8.1	7.2	7.1	lst
Chloride (Cl ⁻)	mg/l	3.5	8.1	6.2	3.2	5.7	8.1	7.4	8.2	5.2	5.1	3.6	3.6	4.5	5.2	7.6	18.5	11.1	l st
Total Nitrogen (TN)	mg/l	1.21	1.32	1.18	1.11	1.12	1.18	1.20	1.18	1.19	1.16	1.15	1.17	1.21	1.11	1.15	1.01	0.98	l st
Heavy Metals concentrations																			
Mercury (Hg)	μg/l	0.011	0.017	0.012	0.011	0.012	0.014	0.012	0.012	0.011	0.011	0.009	0.011	0.012	0.010	0.009	0.016	0.015	l st
Arsenic (As ₃ ⁺)	μg/l	0.09	0.12	0.09	0.11	0.12	0.14	0.09	0.10	0.12	0.10	0.11	0.14	0.11	0.09	0.11	0.14	0.14	lst
Lead (Pb)	μg/l	0.21	0.24	0.21	0.25	0.28	0.21	0.22	0.18	0.20	0.21	0.22	0.21	0.24	0.22	0.22	0.28	0.31	l st
Zinc (Zn ₂ ⁺)	μg/l	21.1	18.5	14.5	17.8	20.1	18.5	18.4	20.1	20.2	17.9	19.1	21.0	20.8	19.7	19.4	23.3	18.1	lst
Cadmium (Cd)	μg/l	0.004	0.009	0.007	0.005	0.008	0.012	0.005	0.008	0.011	0.014	0.008	0.011	0.018	0.011	0.042	0.107	0.088	l st
Manganese (Mn - total)	mg/l	0.011	0.021	0.018	0.011	0.014	0.016	0.020	0.018	0.014	0.011	0.011	0.012	0.011	0.016	0.011	0.018	0.012	lst
Iron (Fe – total)	mg/l	0.766	0.821	0.855	0.891	0.685	0.801	0.721	0.689	0.807	0.804	0.792	0.695	0.744	0.803	0.911	1.822	2.193	III rd

Surface water samples were collected in 2020, in 48 sampling locations from Danube and its main 5 tributary rivers in the Interreg IPA-CBC Romania-Serbia Programme eligibility area. A minimum of 4 samples were collected for each sampling location, analysed in situ and preserved for laboratory analysis:


- ✓ Danube: 17 sampling location
- ✓ Nera river: 12 sampling points and 3 sampling points on Bei river
- ✓ Pek river: 1 sampling location
- ✓ Berzasca river: 8 sampling location
- ✓ Porecka river: 1 sampling location
- ✓ Cerna river: 6 sampling location

Conclusions.

In this frame and after analysing the results obtained by AEPS project team experts after sampling and analysis surface water on Danube, one can conclude that Ecological Status Classification varies from **HIGH** (quality) to **GOOD** on Danube, with oxygen concentration parameters (DO, COD and BOD5) are all in IInd class, **GOOD**; most of the nutrients (Na⁺, Ca₂⁺, NH₄⁻, NO₃⁻, SO₄²⁻, TN) fall into Ist class, **HIGH** quality while orthophosphates P-PO₄³⁻ concentrations classifies Danube water quality in IIIrd class, **MODERATE**. The heavy metals concentration in Danube surface waters in analysed area were all (Hg, As, Pb, Zn, Cd and Mn) very low, well into Ist class, **HIGH** quality. The only exception was found for Iron (Fe), whose values were constantly, to all length of analysed area, into IIIrd class, **MODERATE** water quality.

Complete results and conclusions drawn can be found at: <u>http://aeps.upt.ro/wp-content/uploads/2021/04/web_Study-on-Danube-surface-water-quality-in-Djerdap-Iron-Gate-protected-area.pdf</u>

