

Interreg-IPA Cross-border Cooperation Programme Romania-Serbia

Academic Environmental Protection Studies on surface water quality in significant cross-border nature reservations Djerdap / Iron Gate national park and Carska Bara special nature reserve, with population awareness raising workshops

= RORS-462 =

FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY. Instrumentation and Techniques of Atomic Absorption & UV VIS Spectrometry.

Trainers Horatiu Demian / Analytik Jena Romania Francisc Popescu / University Politehnica Timisoara

Fundamentals

Instrumentation and Techniques of Atomic Absorbtion Spectroscopy

Application on Analytik Jena ZEEnit 700P

RORS-462, aeps.upt.ro FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY 25-26 November 2020

Where AAS is used?

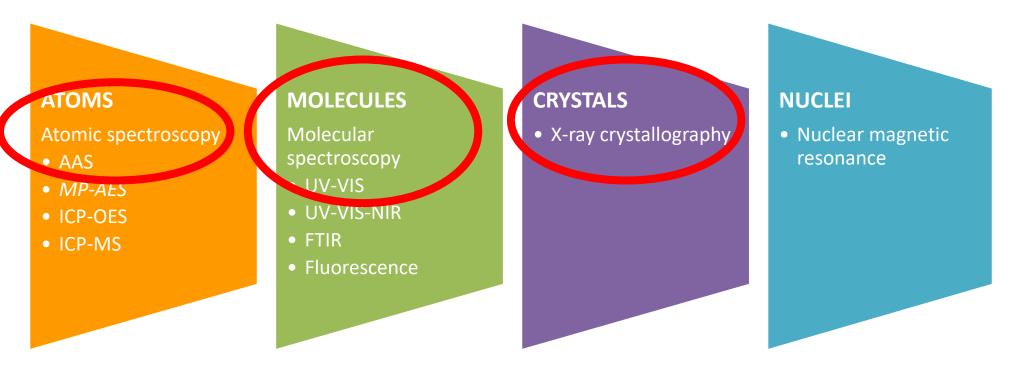
Atomic absorption spectrometry (AAS) is an analytical technique that measures the concentrations of elements. Atomic absorption is so sensitive that it can measure down to parts per billion of a gram $(\mu g/cm^3)$ in a sample. The technique makes use of the wavelengths of light specifically absorbed by an element. They correspond to the energies needed to promote electrons from one energy level to another, higher, energy level.

Atomic absorption spectrometry has many uses in different areas of industry/chemistry:

- > Clinical analysis. Analyzing metals in biological fluids such as blood and urine.
- Environmental analysis. Monitoring our environment eg finding out the levels of various elements in rivers, seawater, drinking water, air, petrol and drinks such as wine, beer and fruit drinks.
- Pharmaceuticals. By using AAS the amount of catalysts used in the process can be determined in final product.
- Industry. Many raw materials are examined and AAS is widely used to check that the major elements are present and that toxic impurities are lower than specified eg the lead level in concrete.
- Mining. By using AAS the amount of metals such as gold in rocks can be determined to see whether it is worth mining the rocks to extract the gold.

How AAS works?

Atoms of different elements absorb characteristic wavelengths of light. Analyzing a sample to see if it contains a particular element means using light from that element. For example with lead, a lamp containing lead emits light from excited lead atoms that produce the right mix of wavelengths to be absorbed by any lead atoms from the sample. In AAS, the sample is atomized – ie converted into ground state free atoms in the vapor state – and a beam of electromagnetic radiation emitted from excited lead atoms is passed through the vaporized sample. Some of the radiation is absorbed by the lead atoms in the sample.


The greater the number of atoms there is in the vapor, the more radiation is absorbed. The amount of light absorbed is proportional to the number of lead atoms.

A calibration curve is constructed by running several samples of known lead concentration under the same conditions as the unknown. The amount the standard absorbs is compared with the calibration curve and this enables the calculation of the lead concentration in the unknown sample.

Theory behind AAS

Spectroscopy is a broad field with many subdisciplines, which can be classified by the type of material being analyzed.

Atomic spectroscopy includes a number of analytical techniques used to determine the elemental composition of a sample by examining its electromagnetic spectrum or its mass spectrum.

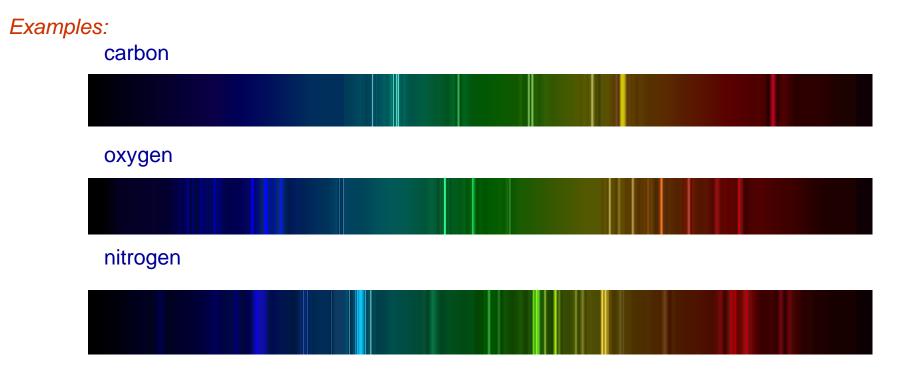
Atomic Spectroscopy	
Identification based on	
Electromagnetic spectrum	Mass spectrum
Atomic Absorption	
• Flame AAS	
 Graphite Furnace AAS 	
 Vapor (Hydride) Generation AAS 	
Atomic Emission	
• MP-AES	• ICP-MS
• ICP-OES	• ICP-IVIS
 X-ray Fluorescence (XRF) 	
Atomic Interference	
 X-ray Diffraction (XRD) 	

FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY

- AAS is based on the breakdown of a sample into atoms, followed by the measurement of the atom's absorption or emission of light.
- ✓ deals with absorbance fluorescence or emission (luminescence) of atoms or elemental ions rather then molecules
 - <u>atomization</u>: process of converting sample to gaseous atoms or elementary ions
- Provides information on elemental composition of sample or compound

- UV/Vis, IR, Raman gives molecular functional group nformation, but no elemental information.

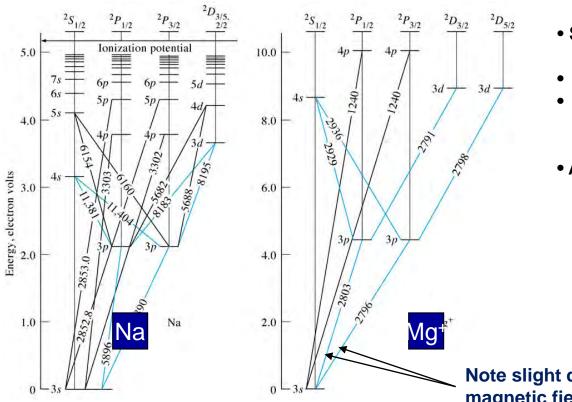
✓ Basic process the same as in UV/Vis, fluorescence etc. for molecules


Absorbance

Fluorescence

Differences for Molecular Spectroscopy

- ✓ no vibration levels that gives much sharper absorbance, fluorescence, emission bands
- ✓ position of bands are well-defined and characteristic of a given element
- ✓ qualitative analysis is easy in atomic spectroscopy (not easy in molecular spectroscopy)



Energy Level Diagrams

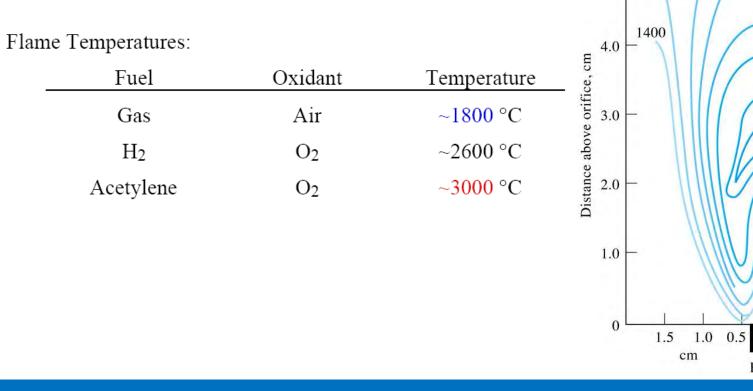
Energy level diagram for the outer electrons of an element describes atomic spectroscopy process.

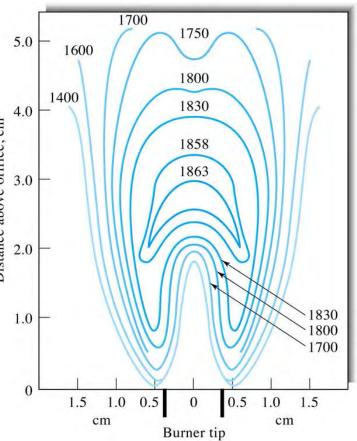
- every element has a unique set of atomic orbitals
- \checkmark p, d, f split by spin-orbit coupling
- ✓ Spin (s) and orbital (I) motion create magnetic fields that perturb each other (couple)

- parallel \rightarrow higher energy; antiparallel \rightarrow lower energy

- Similar pattern between atoms but different spacing
- Spectrum of ion different to atom
- Separations measured in electronvolts (eV) 1eV = 1.602x10⁻¹⁹ J = 96.484 kJ ·mol⁻¹
- As number of electrons increases, number of levels increases

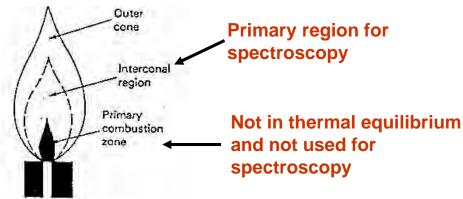
emission spectra more complex

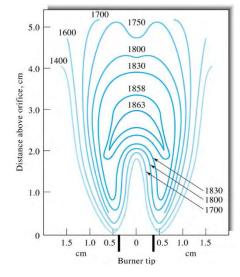

Li 30 lines Cs 645 lines Cr 2277 lines


Note slight differences in energy due to magnetic fields caused by spin

In AAS the flame profile is higly important! Different mixes and flow rates give different temperature profile in flame:

- gives different degrees of excitation of compounds in path of light source

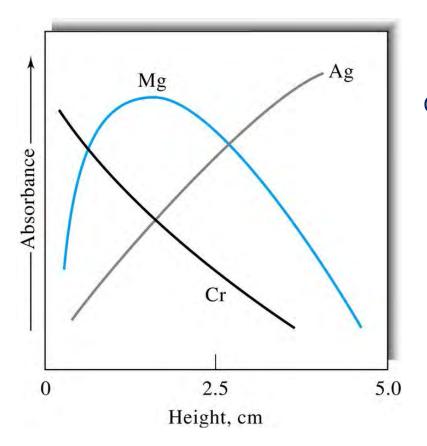




Types of Flame/Flame Structure – selection of correct flame region is important for optimal performance

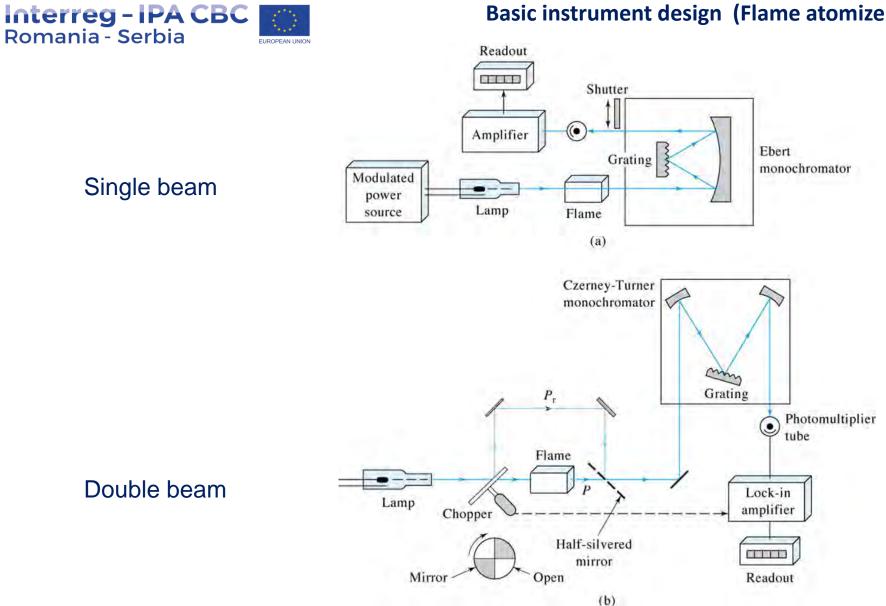
- a) primary combustion zone blue inner cone (blue due to emission from C₂, CH & other radicals)
 - not in thermal equilibrium and not used
- b) interconal region
 - region of highest temperature (rich in free atoms)
 - often used in spectroscopy
 - can be narrower in some flames (hydrocarbon) tall in others (acetylene)
- c) outer cone
 - cooler region
 - rich in O₂ (due to surrounding air)
 - gives metal oxide formation

Temperature varies across flame – need to focus on correct part of flame



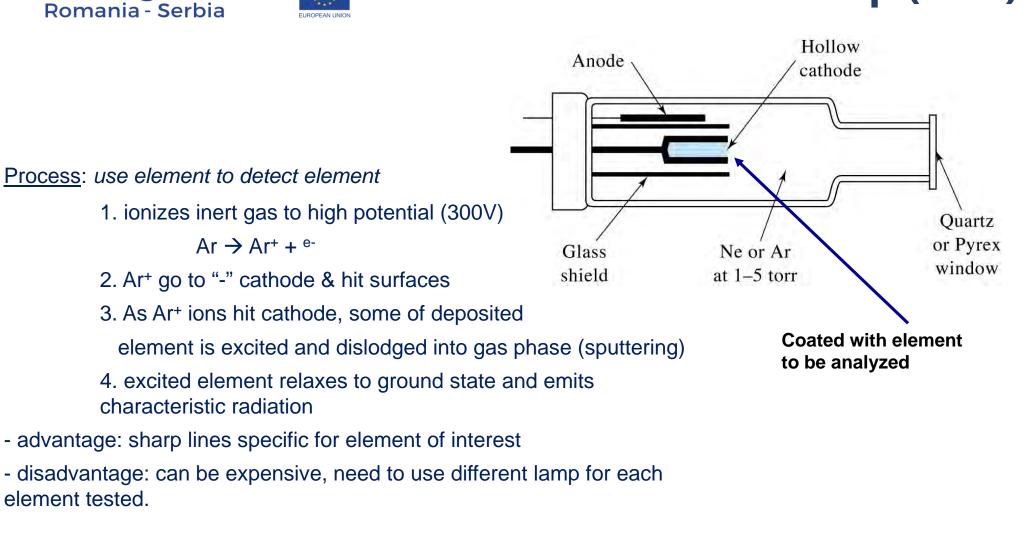
Flame profile: depends on type of fuel and oxidant and mixture ration

RORS-462, aeps.upt.ro FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY 25-26 November 2020


Most sensitive part of flame for AAS varies with analyte

Consequences:

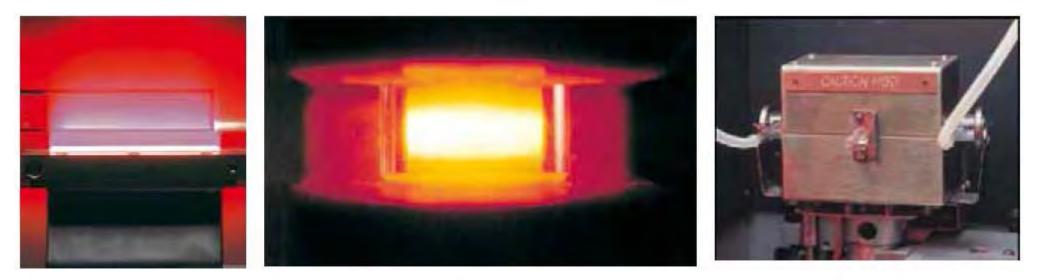
- Sensitivity varies with element
- must maximize burner position
- makes multi-element detection difficult


Basic instrument design (Flame atomizer)

Single beam

FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY

hollow cathode lamp (HCL)


Interreg - IPA CBC

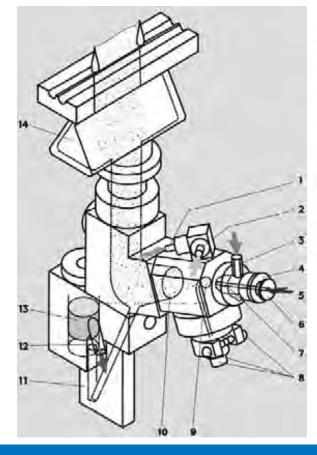
The atomizer

The following atomization techniques are nowadays used in AAS:

- ✓ Flame technique
- ✓ Graphite furnace technique
- ✓ Hydride and Cold Vapor techniques
- ✓ HydrEA technique (combination of Hydride and Graphite furnace technique)

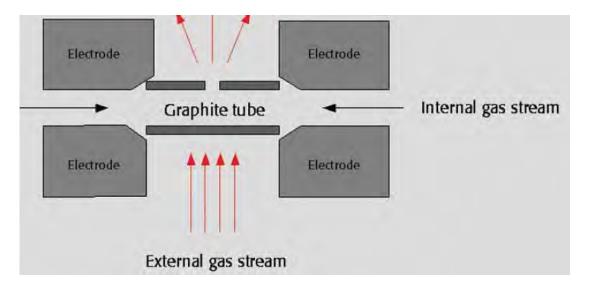
Flame

Graphite furnace


Hydride technique

Atomization in a flame

The sample is transferred into liquid form, e.g. by dissolution. The nebulizer aspirates the solution and transfers it into a fine aerosol. This is directed onto an impact bead for post-nebulization in order to create an even finer aerosol. Large droplets are separated in the mixing chamber, and the aerosol is mixed with the fuel gas and additional oxidant. The aerosol-fuel gas –oxidant mixture is ignited above the burner head.


- 1 Additional oxidant supply
- 2 Fuel supply
- 3 Oxidant supply
- 4 Adjustment screw
- 5 Supply of solution for measurement
- 6 Lock nut
- 7 Nebulizer
- 8 Impact bead adjustment
- 9 Impact bead (silica; teflon coated)
- 10 Mixing chamber
- 11 Siphon trap
- 12 Siphon drain
- 13 Float
- 14 Burner head (50mm, 100mm)

Flame atomization if fast, economic and generates reproducible measurement results in the mg/L and % range.

Atomization in a graphite furnace

With this technique the sample to be investigated may be liquid or solid, and is introduced directly into a graphite tube. A controlled voltage is applied at the ends of the graphite tube, which is heated rapidly to high temperatures (up to 2600°C) due to its resistance. Using time-controlled stepwise heating of the graphite tube the sample solution is first dried, and then the matrix can be destroyed or removed, until finally the element of interest is atomized.

Graphite tube atomization results in LOD that are up to a factor of 1000 better than those obtained with flame atomization

RORS-462, aeps.upt.roFUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY25-26 November 2020

Atomic Absorption Spectroscopy Elemental Coverage in AAS

Н					Flam	e Onl	у										He
Li	Be		Flame & Furnace									В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	SB	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				Th	Ра	U	Np	Pu	AM	Cm	Bk	Cf	Es	Fm	Мо	No	Lr

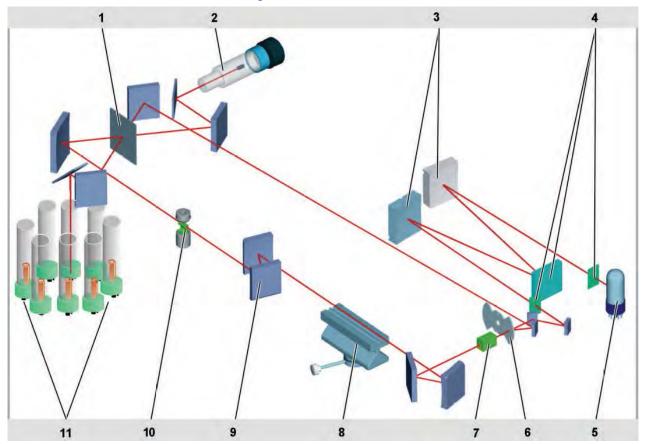
ANALYTIK JENA ZEEnit 700P

RORS-462, aeps.upt.roFUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY25-26 November 2020

AAS techniques with the ZEEnit 700 P

The ZEEnit 700 P as a compact device with 2 separate sample chambers includes, in combination with appropriate autosamplers and accessories, all important atomization techniques:

- ✓ Graphite tube technique for liquid samples.
- ✓ Graphite tube technique for solid samples.
- ✓ Flame technique stationary and as injection technique.
- ✓ Hydride and mercury cold vapor technique.
- ✓ HydrEA technique as coupling between hydride and graphite tube techniques.



RORS-462, aeps.upt.ro

FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY

Optical schematic of the ZEEnit 700 P

1 Beam splitter mirror 2 Deuterium hollow cathode lamp (D2HCL) 3 Monochromator mirror 4 Entrance slit, grid, exit slit **5** Photomultiplier 6 Sector mirror 7 Crystal polarizer 8 Burner in the flame sample chamber 9 Mirrors between the sample chambers 10 Electrodes with graphite tube in the furnace sample chamber 11 Lamp turret with 8 hollow cathode lamps

The sample beam or united sample/reference beam is projected onto the entrance slit of a grid monochromator, that is fitted with the fixed bandwidth of 0.2 nm / 0.5 nm / 0.8 nm / 1.2 nm.

Measurement principle of ZEEnit 700P

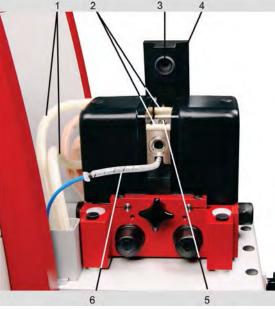
Graphite tube technique with Zeeman background correction

Interreg - IPA CBC

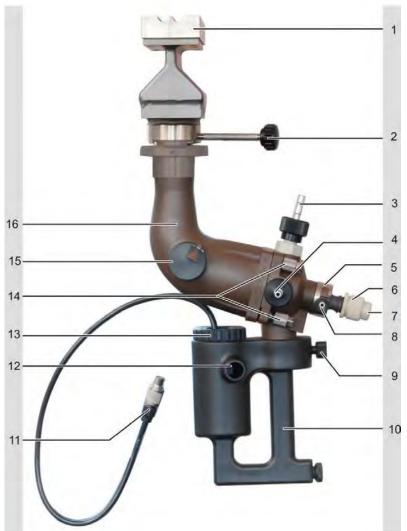
Romania - Serbia

A unipolar, horizontal alternating magnetic field with a frequency of 200 Hz is applied to the graphite tube furnace. In the alternating field, the absorption levels of the analyte atoms of the current analysis line are split up into the horizontally polarized σ components σ +, σ - and the vertically polarized π components. The downstream crystal polarizer allows all radiation components with vertical alignment to pass without de-flection, the radiation components with horizontal alignment are sufficiently deflected that they do not impinge on the entrance slit. In both measurement phases "Magnetic field on" and "Magnetic field off", only the parts vertical to the magnetic field, i.e., only the vertically polarized parts of the HCL radiation, are considered.

All other techniques with deuterium background correction The continuum radiation of a D2HCL is used for compensation of the background ab-sorption. The radiation of the line radiator (primary HCL) with its extremely narrow base line (resonance line) is element-specific and weakened nonspecifically by scat-tering. In doing this, the total radiation is recorded. The radiation of the D2HCL is mainly weakened by the broad band, elementnonspecific absorption, the minimum element-specific part can be neglected. The formation of the difference between the two signals gives the element-specific absorption.

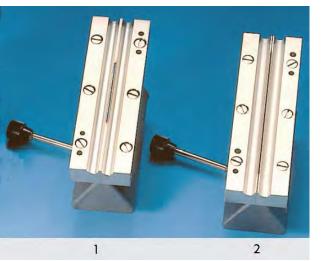


- 1 Inert gas supply purge gas (inner gas stream)
- 2 Cooling water supply
- 3 Pipetter opening
- 4 Cooling water supply
- 5 Inert gas supply protective gas (outer gas flow)
- 6 Stop for AS-GF
- 7 Locking screw
- 8 Furnace locking screw



Graphite tube furnace, open

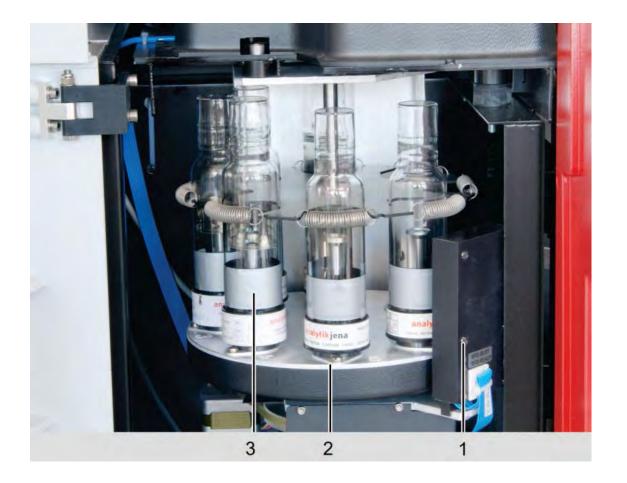
- 1 Cooling water tubes
- 2 Furnace window
- 3 Upper electrode
- 4 Upper metal block, in the open position
- 5 Graphite tube furnace jacket
- 6 Protective gas supply


Nebulizer mixing chamber burner system for flame

- 1 Burner
- 2 Fixing screw for burner
- 3 Combustion gas supply
- 4 Additional oxidant supply
- 5 Locking ring for nebulizer
- 6 Nebulizer
- 7 Sample liquid supply
- 8 Oxidant supply
- 9 Fixing screw for siphon
- 10 Siphon
- 11 Connection of siphon sensor
- 12 Siphon outlet
- 13 Siphon sensor
- 14 Screw joints of mixing chamber parts
- 15 Safety plug 16 Mixing chamber tube

Burner types

1 50 mm one-slit burner
 (standard burner)
 2 100 mm one-slit burner



FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY

Lamp turrets and lamps

The ZEEnit 700 P has an 8-lamp turret with a write/read unit for coded lamps at the active position.

Antenna
 Holder for lamps
 Lamp with transponder

ASpect LS Software for Atomic Absorption Spectrometers

ASpect LS is the control and analysis software for the Analytik Jena AG atomic ab-sorption spectrometers.

The following accessories from Analytik Jena are supported by this software:

- ✓ AAS Autosamplers AS 51s/AS 52s and AS-F/AS-FD for flame and technique
- ✓ SSA 600 solid autosampler with or without liquid dosing
- ✓ Micropipetter unit MPE 60/MPE 60/2 and AS-GF for graphite tube technique
- ✓ Hydride systems HS60 / HS60A, HS55 / HS55A and hydride injector HS50 (hydride/Hg cold vapor technique)
- ✓ Hydride systems HS60 modular and HS55 modular
- ✓ SFS 6 Injection Switch (flame technique)

The method parameters for the measurement procedures can be optimized to the specific demands of the sample to be analyzed. The obtained data can be recalculat-ed, exported to various file formats and printed out.

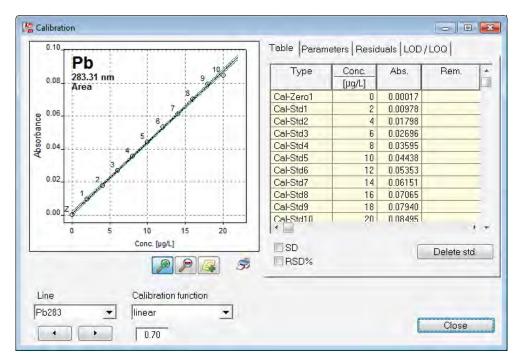
MAIN SETTINGS window

nstrument: novAA 400P	ASpect LS Version: 1.3.0.0		analytikjena
C Flame		Available accessorie Autosampler:	AS52S
 ⊂ Hydride Graphite furnace ⊂ HydrEA 		Sampler tray: Hydride system: Gas box: Burner:	30 Pos. not initialized K05 no burner
Sample state	Tube type	EA controller: Elements (Lamp tur Mn;Fe;Cu	Version 1.5
Operator:] Initial Date:	09.11.2012
		Time:	14:33
Data management	otions	⊏ Simu Exit program	

🛆 Lamp turret			X
Mounting Lamp history Code lamps			
	L		
Pos Type cod. Elements <u>Max.cum</u> [mA]	nt Max. boost Recm [mA] [m	d. curr. Recmd. boos ac A] [mA]	si j
	.0	- *	
3 HCL - Dy 1	.0	- *	
	.0	- *	
	.0 15.0	*	
	.0 15.0	*	
	1.0 - 1.0 -		🛆 Select lamp/element
	1 1		Lamp type Max. currents [mA];
			Lamp position: 🚺 MHCL 🗨 Current 10.0 🛔 Boost 0.0 🗍
Change Register lamp Unregis	erlamp	Initialize	
Delete table			Elem. Name
	Energy		Li Be B C N O F Ne Cr Chromium (Cr) Mn Manganese (Mn)
change lamp Align			
			Na Mg Al Si P S CI Ar Fe Iron (Fe)
		Close	K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Ni Nickel (Ni)
			Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cu Copper(Cu)
LAMP TURRET window	N		Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn
			Fr Ra Ac
			Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
			Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
			A
			Ψ
			OK Cancel

RORS-462, aeps.upt.ro

FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY


Metho	d														
ines	Evaluatio	on Flame	Sample trans	sport Calib. Statist	tics QCS G	2CC │Outpu	it]								
No.	Elem.	Wavel. [nm]	Linedescr.	Optic. mode	Lamp	Current [mA]	Boost [mA]	Slit [nm]							
1	Cu	324.8	Cu324	Single-beam	HCL	2.5		1.2							
2	Fe	248.3	Fe248	Single-beam	HCL	4		0.2		SELECT	ELEMENT	/I INF	= window		
							-			OLLLOI					
							2	Select element/lir	ne						— ×
Ot			Save	Delete	ок th selec		Accep	Select Elements Elements Na Mg K Ca Su Rb Sr Y Cs Ba La Fr Ra An Ca Ti	TI V Cr Mn Zr Nb Mo To A Hf Ta W Re Pr Nd Pm Sm	FeCoNiCuZnRuRhPdAgCdOsIrPtAuHgEuGdTbDyHoAmCmBkCfEs	In Sn Sb Te I TI Pb Bi Po A	I Ar r Kr Xe	Elem, Line [nm] Cr 357.9 Cr 359.4 Cr 427.5 Cr 425.4 Cr 360.5 Cr 429.0	Type Sens P 100 S 77 27 24	. [%]
								Cr357				*	Sort by	© Line	
								Default parame	ters from:	Cookbook	•		D	eselect	
													ОК	Canc	el

RORS-462, aeps.upt.ro

FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY

CALIBRATION window

APPLICATION:

Pb

Flame (Absorption)

ZEEnit 700P

Charact. concentration	[mg/L/1%Abs]	4	0.3
Check concentration ("0.1 Abs.")	[mg/L]	4	7.0

Typical value (±30%) for 100mm-burner and C2H2/air flame

- Spectro	meter		
Main line	[nm]	: 283.3	
Alternat. line	[nm]	: 217.0	-0.5x
Slit width	[nm]	: 1.2	
HCL current	[mA]	: 2.0	

- Atomizer: Flan	ne —	_	
Flame		÷	C2H2/Air
C/O-Stoichiometric		31	0.13
Fuel flow	[NL/h]	1	65
Usable burner height	[mm]		5 - 10
Alternative flame		4	

FUNDAMENTALS OF ATOMIC AND MOLECULAR ABSORPTION SPECTROMETRY

- Notes		_
Diluent for stock solution	: HNO3/1%	
Ionisation buffer	: KCI/0.1% or CsCI/0.1%	
Interferences	: Cu 216.5 nm / Fe 216.7 nm / Ni 216.6 nm Sb 217.6 nm / Pt 216.5 nm	
Further alternative lines	: 261.4 nm - 17x / 368.3 nm - 30x	
Background correction		
Super-HCL	: recommended (6/8 mA)	
Contaminations	-1 	

Element is toxic - careful handling!

APPLICATION REPORT Example

ZEEnit 70	OP							Page	1/8								
Operator:	FRAN	ICISC	Laborator)AC.														
Method F	aramete	ers Technique: F	lame														
Name:		umb test			Ver	sion:	1		Calib	oration							
Created:	9/	1/202010:17			Ope	erator:	FF	RANCISC	Metho	od:	st	d. cal.	Std.	prep.:	manual		
Comment.																	
Lamp code									Calib	oration Cu	rve Par	ameters					
Pb: 191722									Line	Ca	lib.func	Intercept	Weig	hting	Check	Unit	
Lines	Ľ.	A 45.	3	-					Pb28		ear	calculate	none		none	mg/L	
Line	Elem.	Wavel. Optic. [nm]	mode Lamp	Current [mA]	Boost [mA]	Slit [nm]	Meas ti [s]	me. PMT [V]	No.	Туре	Pos	_	Rec	Pb			
Pb283			e-bear HCL	2	[III/A]	1.2	3.0	300	140.	Type	FUS		Rec	[mg/L]			
1 0200	10	200.0 Oligi	C-DCarrioL	2		1.2	0.0	500	1	Cal-Zer	010			0			
Evaluatio	n/Backg	ground correctio	on						2	Cal-Std			-	5			
	Backgrou		ode AZDK Smo	oth D	2 cur ImA] HC/BC r	ot		3	Cal-Std				10			
	no backg				. our. IniA	-	ut.		4	Cal-Std				15			
									5	Cal-Std				20			
Flame Pa	rameter	s							5	Cal-Siu	4 0		-	20			
Type:		C2H2/air	Ox. control:	off													
Burner typ	e.	50 mm	Burner angle:	0 deg	3	Nebulizer	rate:	0 mL/min	ACooo	+101550	1						 Application Lang
Line	C2H2 [L/h]	V/air	Burner height [mm]						_ ASpec	t LS 1.5.5.0)						Analytik Jena
Pb283	55		6														
Sample 1	ranspo	rt															
Autosamp		No	Delay time:	5 s													
Injection s	witch:	No															
Wash:		after sample	Wash time:	10 s													

ZEEnit 700	P		11/24/202012	::50		Page 5/8
Operator:	FRANCISC	Lab	orato∰AC. MEC∆NIC	Δ		
Results						
Results file:	0.1000101	Public\Docu -01 1052.tp		Jena\AS	pectLS\FL\RES	ULTS\Plumb
Instrument:	ZEEnit 70 #150Z7P2		Technique:	Flan	ne	
Operator:	FRANCISC 10:52)	(9/01/2020				
Comment:						
Line	Mean	SD	RSD[%]	CI	Unit	Rem.
Autozero	Plumb te	est(1)			Date:	9/1/202010:52
Pb283						
Cal-Zero1	Plumb te	est(1)			Date:	9/1/202010:53
Pb283						
Conc.1	0				mg/L	
Abs.	0.00014	0.0002	4 169.6			
Single values	2 3	1 #2: 0.00016 #	3: 0.00038 (SEV: 2	57V)		
Cal-Std1	Plumb te	est(1)			Date:	9/1/202010:54
Pb283						
Conc.1	5				mg/L	
Abs.	0.07699	0.0005	9 0.8			
Single values	(Abs.): #1: 0.07682	2 #2: 0.07765 #	3: 0.07651 (SEV: 25	57V)		

5/8

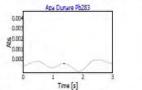
Operator: F	RANCISC	Labora		Δ		
Line	Mean	SD	RSD[%]	CI	Unit	Rem.
Compute calib	Pb283				Date:	9/1/202010:5
Pb283	50 M 1 M					
R ² (adj.): 0.9	99287611 Slo	pe: 0.01616	Abs./mg/L C	har.conc.:	0.26981 mg/L	/1%A
Method SD:		bx)/(1+cx a=-				
0.14966 mg	1 (0.0056276	-0.010100		
0.14000 mg		0.0				
	Pb283					
0.30		Sec. 1. 16. 1				
0.25						
0.20		3				
0.15						
VI 0.15 0.10		4				
0.05	× ·					
0.00 7		1.1.1				
	5 10	15 20				
	Conc. [mg/L]					
QC std.2	Plumb tes	st(2)			Date:	9/1/202011:0
DI 000	1000					
Pb283	10.02	0.1564	1.6		mg/L	
Conc.1			4.5			
Pb283 Conc.1 Abs.	0.15283	0.00227	1.5			
Conc.1 Abs.	0.15283 bs.): #1: 0.15046 ;	0.00227 #2: 0 15498 #3: 0	A second second second second	57V)		

ZEEnit 700P

	1	•	
EI	JROPEA	N LINI	ON

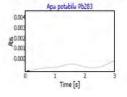
11/24/202012:50

Page 8/8


Operator: FRANCISC

Laborato AC.

MECANICA


Line	Mean	SD	RSD[%]	CI	Unit	Rem.
Apa Dunare	Plumb test	(2)			Date:	9/1/202011:05
Pre-DF: 1	Wt.[g]:	1	Vol.[mL]: 100	AS-DF: 1.0	Blank	corr.: off
Pb283						
Conc.1	0.0113	0.0142	125.6		mg/L	<lod< td=""></lod<>
Conc.2	0.0113	0.0142	125.6	0.7412	mg/L	<lod< td=""></lod<>
Abs.	-0.00033	0.00023	69.2			<lod< td=""></lod<>
	-0.00000 -0.00000 #			057\/)		LOD

Single values (Abs.): #1: -0.00020 #2: -0.00060 #3: -0.00020 (SEV: 257V)

Apa potabila	Plumb test	(2)			Date:		9/1/202011:07
Pre-DF: 1	Wt.[g]:		Vol.[mL]: 100	AS-DF: 1.	0 Blank	corr.:	off
Pb283							
Conc.1	0.0026	0.0030	114.9		mg/L	<l(< td=""><td>DD</td></l(<>	DD
Conc.2	0.0026	0.0030	114.9	0.7420	mg/L	<l(< td=""><td>DD</td></l(<>	DD
Abs.	-0.00047	0.00005	10.3			<l(< td=""><td>DD</td></l(<>	DD

Single values (Abs.): #1: -0.00049 #2: -0.00051 #3: -0.00042 (SEV: 257V)

